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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

What are BECs? Theory

@ Boson particles are those particles whose total spin are
integers. Alkali atoms are bosons.

@ Two identical bosons can occupy the same state.

@ Bosons are confined at very low temperature, their de
Broglie wave length are long enough. They are coherent
and the lowest quantum state become apparent, called
BEC.
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

What are BECs? Experiment

BECs were realized in lab by E. Cornell, W. Ketterle and C.
Wieman (1995).
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Mean field model for BECs

@ N particle system: wave function Wy(xy, -+, zyn,t),
Hamiltonian:
N R
HN = Z (_WV + V ) Z ‘/mt k)7
j=1 1<j<k<N

@ Ultracold and dilute gases, the mean field approximation:
Vint (% — xi) = g6(x; — @)

@ Hartree ansatz: all boson particles are in the same
quantum state

Uy (- o t) = [[ (1),
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Gross-Pitaeviskii equation

@ Hamiltonian:

f
b 2
H= g IVl + V@l

o B
VP + Gl B=gN

Energy E[¢] = [ H dx.

o Gross-Pitaevskii equation: ihdy) = O /.
O = — S+ V() + Bl
TNOY = 2Ma X

1) wave function
V() trap potential: V(z) = 1377  w?a?.
@ Interaction: repulsive if 8 > 0, attractive if § < 0.
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Rigorous Justification of G-P equation

e E. Lieb, R. Seiringer and J. Yngvason(2001) for ground
states

@ L. Erdos, B. Schlein and H. T. Yau (2010) for dynamics
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

One-, multi-component and spinor BECs

@ One-component BECs: atoms with a single quantum

state are trapped. E.g. Using magnetic trap

@ Two-component BECs: mixture of two different species
of bosons. E.g. two isotopes of the same elements, or

two different elements

@ Spinor BECs: mixture of different hyperfine states of the
same isotopes. E.g. Spin-1 atoms using optical trap.

There are 3 hyperfine states mp = 1,0, —1
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Two-component BECs

@ Vector order parameter (1)1, 1)

@ Hamilton:

2
H= Z [ |V1/J2|2—|—V |¢z|2 ZBU’U]‘ |1/)7’2]

@ Vector G-P equations

ihOp), = [ 27;\/[1 V2 4+ Vi(z) 4 ulinf +ﬁ12|¢2|21 U

ihOppy = [ 2?\42 V? + Vao(x) + Braltn|* + 522|1/12|2} (2
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Spinor BECs

@ Spin-1 atom has 3 hyperfine states: mp = 1,0, —1.
@ Vector order parameter W = (11,1, 1 _1).
@ Associate with a spinor W, the spin vector
F = UIFWU € R?, which is just like a magnetic dipole
moment.
o F = (F,, F,, F.) is the spin-1 Pauli operator:

b1
V2
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

G-P equation for spin-1 BECs

@ Hamiltonian:

H =

‘ C Cg n .
V(z) |V 4+ 2|+ 2| U
2\[ +(>||+2||+2| |

e |U|?.|¥|? spin-independent interaction

o |UTFW|2: spin-spin interaction (spin-exchange).
@ The total energy E[¥] = [ H dx.

@ The G-P equation

OE

ihat\I/ — W
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Part 1: Background BECs and spinor BECs

Physical parameters

What are BECs? Mean field model: Gross-Pitaevskii equation

C C .
2 Cn 4 S 2
He el 4 v W[+ U TRY|
2]\[ 2
interaction >0 <0
2
Cn = W spin-independent repulsive attractive
5 3Ma
cs = ATh 3(;{27%) spin-exchange antiferromagnetic ~ ferromagnetic
Cn Cs
8TRb  7.793  -0.0361 ferromagnetic
23Na  15.587 0.4871 anti-ferromagnetic
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Spinor BEC in uniform magnetic field

e Hamilton H = Hy;, + Hypor + H,, + Hs + Hye.

@ Zeeman energy: suppose magnetic field B2,

1
HZ(%@ - Z EJ(B>nJ

j=-1

where n; = |¢;]2.
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Gauge invariants and conservation laws

@ Energy
E[V] = /(Hkm + Hpot + Hy + Hs + Hzee) do
@ Gauge invariant: energy is invariant under transform
U — R, (a)V

@ This leads to two conservation laws:

e Total number of atoms

/(lel2 + ol + [¢—1/*)de = N

e Total magnetization

/ (12 — [r|?) da = M
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

The ground state problem

Ground state problem

min E[V] subject to /n(x) dx = N, /m(x) dx = M.

where
o E[V] = [Hdx
© H = Hyjp + Hpor + H,, + Hy + Hye,
o n; =[],
e n=mn1+nyg+n_q

@ MmMm=mny —N_1
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

A closer look at Hamiltonian

o Express ¢; = ,/mje'i
O Hyin: [VUP? =37 (IVym5[° +n;V;]?)
@ Constant phase has least kinetic energy
o Hy= %‘9|\I/TF\I/]2:
UTFU|? = (ny—n_1)*+2no(ny+n_1+2/nin_ cos(Af))

A =0, +0_1 — 20,

@ To minimize H,, we should choose

AH:{O !fcs<0
m ifeg >0

17 /57



Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

@ Spin-exchange Hamiltonian:

Hs - % [(nl - n*l)Q + 2710(\/ Ny — Sy n*l)Q} S = Signcs

@ Spin-exchange interaction
interaction ¢, < O(ferro) ¢, > O(antiferro)

(ny,m_q) —csnin_q repulsive attractive
(ng,ny) CsNoNy attractive repulsive
(ng,n_1)  csnon_q attractive repulsive
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Part 1: Background BECs and spinor BECs What are BECs? Mean field model: Gross-Pitaevskii equation

Spinor BECs, theory and experiments

F|gU € . University of Hamburg 2006: First 1D-lattice at the spinor experiment. As a first step towards the
exploration of magnetism of spinor quantum gases in periodic potential we have successfully loaded a BEC into a
standing wave potential using a Ti:Sa laser at 830nm. The figure shows an absorbtion image after 21ms
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time-of-flight demonstrating the interference of matter waves from different lattice sites.



Part 2: Numerics Numerical investigation: no external magnetic field Numerica
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@ Part 2: Numerics for Ground States of Spin-1 BECs
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Part 2: Numerics Numerical investigation: no external magnetic field Numerica

Some numerical works

@ Weizhu Bao

e Qiang Du

@ Wenwei Lin et al.

@ Jie Shen

@ Chen-Shen Chien et al.

@ Chen, Chern, Wang: Pseudo-arclength Continuation
method
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Part 2: Numerics Numerical investigation: no external magnetic field Numerica

Pseudo arclength continuation method-1

@ Euler-Lagrange equation

(o + M)y = Hoy + cs(n1 + no — n_1)y + csth_11g
b = Hptbo 4 ¢5(ny 4 n_q)ibo + 20 _1othy
(=N = li[nwfl + cs(ng +n_g —ny)p_1 + Cslzﬂﬂg
e Two constraints: [ndex =N, [mdx= M.

@ Solve the nonlinear eigenvalue problem + 2 constraints:
F(x,7)=0

with & = (Y1, %0, ¥_1, 11, A) and ¢, (1), ¢5(T) chosen.

@ The solution is a curve x(7), or u(7) := [x(7), T].
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Part 2: Numerics Numerical investigation: no external magnetic field Numerica

Pseudo arclength continuation method-2

e PACM: Continuation method to find u(-) by iteration
from w; to w; 41 with F(u;) =0 and F(u;;) = 0:
@ Prediction:
o Find tangent: u; = [&;,7;] by solving
DF (ui(s))t; = 0, DF(u;(s)) = [Fz(ui(s)), Fr(ui(s))] .
e Euler predictor: ul(}r)l = u; + 0;U;
@ Correction:
e Orthogonal projection
F(ui1) =0,
(uiJrl — ul(i)l) . 'U,Z = 0,
e Solved by Newton's method
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Part 2: Numerics Numerical investigation: no external magnetic field Numerica

Pseudo arclength continuation method-3

@ Initialization
o Starting from (¢, cs) = (0,0): the linear eigenvalue

problem:
2

(_2Ma
e Define a single mode approximation solution by

V2 + V) = .
\ij = (’7177077*1)172)
where
v=(1+M,2(1-M2),1-M)/2 (30

e Find the initial state @ by solving F(x,0) = 0 by
Newton's method with initial (@,,&,0,0).
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Part 2: Numerics  Numerical investigation: no external magnetic field Numerical

Numerical investigation: no external magnetic field

Goal: Study the structures of ground state and excited states
as ¢, varies.
e Experiment 1 (*”Rb: Ferromagnetic)
o V=0 M=02
e ¢s € (—0.5,-0.2)
e Experiment 2 (**Na: Anti-ferromagnetic)
o V=22/20, M =0.2
e ¢cs €(0.2,5)
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Part 2: Numerics  Numerical investigation: no external magnetic field Numerical

Characterization of ground states (B = 0)

@ Ferromagnetic systems: SMA
@ Antiferromagnetic systems:

o 2C if M #0

e SMAIf M =0
o SMA: Ar={uec A lu= (71,7, 7-1)p}
e 2C: Ay ={ue Aluy =0}
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Numerical investigation: uniform magnetic field

e Hamiltonian H = Hyy, + Hpot + Hy, + Hs + H..

@ Zeeman shift energy: Suppose magnetic field Bz,

1
HZ(%@ - Z E](B)n]

j=—1
=q(ni +n_1) +p(n —n_y) + Eyn

where n; = |¢;|*> and

B

1
=—(F_{—F)~
p 2( 1 1) 5
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

@ The energy

E[U] = / (H + q(ny +n_1)) de + EgN + pM

H = Hkin+Hpot+Hn+Hs

@ Ground state problem

min E[¥] subject to /n(x) dr = N,/m(as) dx = M.

@ Important observation: ¢ T = nyq |
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Numerical Investigation (Antiferromagnetic ¢s > 0)

Goal: Study phase transition diagram on ¢-M plane for spinor
BECs as the external field B (or ¢) varies.

@ Tests for e = 0.1, 0.5, 1.0, where €2 = h?/2M,,.
e Varying M: ranging from 0.05 — 0.9.

@ For each fixed €, M, perform Pseudo Arclength
Continuity Method with continuation parameter: ¢
ranging from 0 to 0.5.
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Antiferromagnetic systems: € = 0.5

Figure : € = 0.5. Blue line is the transition: 2C — 3C (symmetric).
Red line is the transition: 3C (symmetric) — NS+2C.
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Table : (Case 1) Ground state patterns of antiferromagnetic BEC
(#3Na) with M = 0.3 in the constant potential.

g=-1 q=0 g = 0.02582

State 2C 2C 3C

Profile

¢=01115 q¢=1 =3

|

State 2C4+NS 2C+NS MS+NS

|

Profile l
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Numerical Investigation (ferromagnetic ¢, < 0)

Goal: Study phase transition diagram on ¢-M plane for spinor
BECs as the external field B (or ¢) varies.

@ Tests for e = 0.1, 0.5, 1.0, where €2 = h?/2M,,.
e Varying M: ranging from 0.05 — 0.9.

@ For each fixed €, M, perform Pseudo Arclength
Continuity Method with continuation parameter: ¢
ranging from 0 to —0.5.
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Ferromagnetic systems: € = 0.5

Figure : € = 0.5. Blue line is the transition: 3C (symmetric) —
NS+2C.
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Table : (Case 3) Ground state patterns of ferromagnetic BEC
(87Rb) with M = 0.3 in the constant potential.

g=—-1 ¢=-02035 ¢=—0.01416

State MS+MS  MS+MS-+NS 2C+NS

Profile 1.4 A e
¢=0 a=1 —
State 3C 3¢ o
,,,,,, T T
Profile L = | |
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Experimental Results: Phase transition 2C — 3C
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Summary of numerical studies (antiferromagnetic)

Ground state patterns (for ¢s > 0):
2C, 3C (symmetric), 2C + NS, MS + NS
As g T, then ng T and nyq .
Phase separation between ng and n4q as ¢ 1.
On ¢-M plane, bifurcation curves: gsc 3¢, G3¢—204NS-
For ¢ < q2c—3¢, the 2C state is independent of q.
For ¢ > q3c 201 ns, there is a symmetry breaking.
As M ~ 0, then ng >> ny,n_; and it takes stronger g to
break the symmetry.
Existence of 3C (symmetric) is due to strong
homogenization effect of the kinetic operator, which

becomes more apparently for large €.
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Part 2: Numerics Numerical investigation: no external magnetic field Numerical

Summary of numerical studies (ferromagnetic)

@ Ground state patterns (for c; < 0):
3C (symmetric), 2C 4+ NS, 2C

@ As g |, then ng | and nyq 1.

@ Phase separation between ny and n_; as q |.

@ On ¢-M plane, bifurcation curve: q3c_s204ns-

e For ¢ > g3c_201nNs, there is a symmetry breaking.

@ It is easier to break the symmetry because n; and n_; are
not small even when M ~ 0, and there is a strong

repulsion between n; and n_;.
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Existence and Uniqueness Characterization of the ground stat

QOutline

© Part 3: Analysis for Ground States of Spin-1 BECs
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Existence and Uniqueness Characterization of the ground stat

Variational Method for Spinor BECs in R?

@ Existence and Uniqueness
@ Characterization of ground states
e ¢ =0 (no magnetic field)
e g # 0 (for antiferromagnetic system)

@ Phase transition diagram (antiferromagnetic)
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Existence and Uniqueness Characterization of the ground stat

Assumptions and Variational Problem

@ Assumptions
o (Al): V(z) > 0and V(z) — oo as |z| — oo in R3
o (A2): ¢, > 0,lcs| < ¢y
o (A3): ¢>0

@ Ground state problem

min Efu) = /H(u) dx subject to N'u] =1, M[u] = M.

H(u) = [Vu’ + Vp* + Zp*
2 2

+ o [(uf —u?)? + 2ug(ur — su_y)’] + q(uf +u?y)
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Existence and Uniqueness Characterization of the ground stat

Admissible class

@ Function class
B = {(u1,up, u_1)|u; > 0,u; € H' N L}, N L*(R%)} .

where ||, = [ |V

@ Admissible class
A={ueB|N[u =1, M[ul =M}
e Ground states: let £,(M,q) = infyep E[v] and

Garg = {u e A|Eu] = Ey(M, q)}
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Existence and Uniqueness Characterization of the ground stat

Existence

Theorem (Existence)

G # (), i.e. there does exist a ground state. Furthermore, for

each u;, either u; = 0 or u; > 0 on all of R?.

@ Direct method of calculus of variation.
@ Coerciveness:

o Trap potential gives H' N Ly, cC L?.
o ¢, >0, |cs| < cp, give Hy + Hy < Clul*.

@ Strong maximum principle: u; > 0 or u; = 0.
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Existence and Uniqueness Characterization of the ground stat

Uniqueness

The 2C state z = (21,0, z_1) is unique and is independent of q:

@ The energy functional is convex in (27,0, 2% ,).

H(z) = |Vz]> + V2 + 2

o [q(zf+2%))dx =¢gN.

Remark. The ground states may not be unique in general!

E.g. In 1D, there are two solutions after symmetry breaking.
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Existence and Uniqueness Characterization of the ground stat

Characterization of ground states (¢ = 0)

@ Ferromagnetic systems: SMA
@ Antiferromagnetic systems:

0 2C if M #0

e SMAIf M =0
e SMA: Ar={ue Alu=(7,v%,7-1)p}
e 2C: Ay ={ue Aluy =0}
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Existence and Uniqueness Characterization of the ground stat

Ground states: ¢, < 0, ¢ =0

The ground states in ferromagnetic systems are SMA.

In ferromagnetic systems (cs < 0),
(i) For any u € A, define p = |u| and

v o= 1(1+%)

2
% = i(1-25)
v, = 1(1-%).

Then H(~v*p) < H(u);
(il) ifue GN(C?*(D))3, then u = ~*p.

Here, G is the set of ground states,
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Existence and Uniqueness Characterization of the ground stat

Ground state ¢, > 0, ¢ =0, M # 0

The ground states in antiferromagnetic systems with M # 0
are 2C.

Theorem

In antiferromagnetic systems (cs > 0),
(i) Given any u € A, define u = (uy, g, u_1)

up =0, E E u],u — 2, =u? -l

then H(u) < H(u) for anyu € A;
(it) if M #0 andu € GN (C?*(D))3, then u = u.

46 /57



Existence and Uniqueness Characterization of the ground stat

Ground states: ¢, >0, ¢q=0, M =0

The ground states in antiferromagnetic systems with M = 0
are SMA.

Theorem

If cs >0 and M =0 or ¢y, = 0, then the ground states are
(tp, V1 —22p,tp),t € [0,1/V2],

where p minimizes

min/ IV + V2t fh
feAsS D
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Existence and Uniqueness Characterization of the ground stat

Characterization of ground state ¢, > 0, ¢ > 0

Proposition

(1) For M =0, ¢ >0, ue Gy, satisfiesu; =u_1 =0

(2) For M =1, ¢ > 0, u € Gy, satisfies ug =u_; =0

(3) ForO < M <1 andq>0,uec Gy, satisfies u_y < u;.
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Existence and Uniqueness Characterization of the ground stat

Phase transition from 2C to 3C

For0 < M < 1, there is a q.(M) > 0 such that for g > q.(M)
(resp. q < q.(M)), u € Gy, implies ug > 0 (resp. u = z").
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Existence and Uniqueness Characterization of the ground stat

Key: Mass redistribution reduces kinetic energy

@ Mass redistribution: (uy, ..., u,) — (v, ..., U) by
v = Zbekui , ba, > O;Zbﬂc =1
k ¢

@ Mass redistribution reduces kinetic energy

]Vv\g < \Vu|2

o |Vv|? =|Vul? if and only if u;Vuy, = u,Vu; for every

J # k with by;bg, # 0 for at least one /.
o Key step

D ber| Vug || Ve |* =
k

Yl i<k

1
— Z bgjber|u; Vuy, — ukVuj|2 on where vy > 0
0 on where vy = 0,

@ For m =1, see Lieb and Loss.
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Existence and Uniqueness Characterization of the ground stat

Recall: Phase transition from 2C to 3C

Proof.
© Claim 1: For ¢ large enough, u € G, we have uy > 0.

@ Claim 2: Assume for some ¢ there exists u € G, with
ug > 0, then for every ¢’ > ¢, v € Gy satisfies vy > 0.
© Claim 3: There exist a ¢ > 0 such that u € G, implies

u=z(i.e. up=0).

51/57



Existence and Uniqueness Characterization of the ground stat

Claim 1: For ¢ >> 1, u € G,s,, we have uy > 0.

Proof.
© Suppose z € Gy, then z is independent of ¢;
@ Consider the redistribution to make £4.. smaller:
vi=(1—1)zf, vy =r2f + 22, 02 =0,

where r is chosen to keep M[v] = Mz].

© This redistribution does not increase H},;,, and leads to

gs [Z] + gZee [Z] S gs [V] + gZee [V]
© ¢ has an upper bound by
(1 = M)q = Ezeelz] — Ezee|v] < &[] — El2],

RHS is independent of g.
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Existence and Uniqueness Characterization of the ground stat

Claim 3: g > 0 such that u € Gy, = vy = 0.

© For 3C, ¢ has lower bound:
Consider the redistribution to make £z.. smaller:

1
2 2 2
Ul == ul + _UO,
2
2 _
vy = 0,
1
2 2 2
vy =u, + §u0.

@ This redistribution does not increase H;;,, and leads to

Eufu] + Ezee[t] < EV] + Epelv]

q/ug > 2cs/u(2)(u1 —u_y)>

Then
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Existence and Uniqueness Characterization of the ground stat

3 Take ¢" — 0, u" — u®™ with u” € Gy q4n
o [y 2 [ -z [ w2z [

e u” — u™ uniformly and u™ € Gy ;
e We have known that u{® > u> when ¢ = 0;

e u” are exponential decay at far field,;

4 [(uf)? =0if n is large enough.
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QOutline

@ Conclusion
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Summary of analytic results

@ Existence of ground state for the case: trap potential
with ¢, > 0, |cs| < ¢,

@ Uniqueness: for 2C ground state (c¢,, ¢s,q > 0)

Characterization of ground states (¢ = 0)
e For ¢, < 0, SMA
e For ¢ >0, 2C (M # 0) and SMA (M = 0)
Characterization of ground states (c,,cs > 0, ¢ > 0)
o If M =0, then nematic state (NS) (0,1,0)
e IfO< M <1, thenu_1 <uy

@ Phase transition: for ¢s > 0, there exists ¢ac,30(M)

A key lemma: Mass redistribution reduces kinetic energy.
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Thank you for your attention.
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